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Abstract

The difference due to the content of a priori information between a constrained retrieval
and the true atmospheric state is usually represented by the so-called smoothing error.
In this paper it is shown that the concept of the smoothing error is questionable because
it is not compliant with Gaussian error propagation. The reason for this is that the5

smoothing error does not represent the expected deviation of the retrieval from the true
state but the expected deviation of the retrieval from the atmospheric state sampled
on an arbitrary grid, which is itself a smoothed representation of the true state. The
idea of a sufficiently fine sampling of this reference atmospheric state is untenable
because atmospheric variability occurs on all scales, implying that there is no limit10

beyond which the sampling is fine enough. Even the idealization of infinitesimally fine
sampling of the reference state does not help because the smoothing error is applied
to quantities which are only defined in a statistical sense, which implies that a finite
volume of sufficient spatial extent is needed to meaningfully talk about temperature or
concentration. Smoothing differences, however, which play a role when measurements15

are compared, are still a useful quantity if the involved a priori covariance matrix has
been evaluated on the comparison grid rather than resulting from interpolation. This
is, because the undefined component of the smoothing error, which is the effect of
smoothing implied by the finite grid on which the measurements are compared, cancels
out when the difference is calculated.20

1 Introduction

Often the analysis of remotely sensed data of the atmosphere leads to ill-posed or even
underdetermined inverse problems. This is, because the measurements do not contain
enough information to reconstruct the atmospheric state on a grid as fine as chosen
by the retrieval scientist. A variety of regularization techniques have been proposed to25

solve such kind of inverse problems, among them regularization methods by Tikhonov
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(1963a), Twomey (1963) and Phillips (1962) as well as the optimal estimation scheme,
which has been systematically investigated by Rodgers (1976) and which has been
retitled maximum a posteriori retrieval by Rodgers (2000). Any of these regularized
retrievals, however, contain formal prior information.

Contrary to its use in analytical philosophy, the term “a priori” does in this context not5

denote factual (as opposed to logical or analytical) knowledge which is so obviously
true that it can be taken for granted (in a Kantian sense). Instead, in remote sensing
theory, “prior” or “a priori” are defined only relative to a measurement and denote what
is known – or assumed to be known – before the measurement is taken, i.e. these
terms are used here in a Bayesian sense.10

We call prior information “formal” if it is imported via a formal constraint in the re-
trieval equation, as opposed to indirect prior knowledge. Indirect a priori knowledge, or
indirect constraints, can be applied e.g. by just using a finite more or less coarse grid for
representation of the atmospheric state and some interpolation rule for determination
of the atmospheric state between the gridpoints, or by retrieving a nonlinear function of15

the target quantity x which constrains the result to positive (e.g. by actually retrieving
the logarithm of x) or otherwise bounded (e.g. by actually retrieving the sine or cosine
of x) values.

With a grid coarse enough often maximum likelihood retrievals are possible which do
not require any formal constraint or a priori information. While the effect of finite resolu-20

tion is self-evident in the latter case, because nobody reasonably expects the resolution
of an, e.g., vertical profile be better than the grid on which it is represented, regular-
ized retrievals lead to oversampled profiles, i.e. there are more altitude gridpoints than
independent pieces of information. In this case, it is essential to report the influence
of the prior information on the retrieval to the user. Since the constraint can push the25

retrieval away from the actual true state of the atmosphere towards the prior informa-
tion, the regularization causes an additional error term. This term is larger when the
influence of the prior information is stronger, which is the price to pay for a reduction of
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the retrieval noise by regularization. This additional error term was initially called “null
space error” (Rodgers, 1990) until it was renamed “smoothing error” (Rodgers, 2000).

In this paper it will be shown that the so-called smoothing error has a particular
characteristics which makes the related concept questionable. In Sect. 2 the formal
environment will be presented in which the discussion will take place and the notation5

and terminology will be clarified. In Sect. 3 the error propagation of the smoothing error
will be discussed and related problems will be identified. Section 4 is dedicated to an
(admittedly: failed) attempt to save the smoothing error concept by evaluating it on
a fine enough grid, and in Sect. 5 alternative approaches to characterize the impact of
prior information on the profile are discussed. In Sect. 6 an application will be identified,10

where, despite all criticism, a concept closely related to the smoothing error concept
still is appropriate. Finally, in Sect. 7, the main lessons learned will be summarized
and the implications on the appropriate representation of remotely sensed data will be
discussed.

2 Background and notation15

For formulation of a constrained retrieval we use the concept and notation of Rodgers
(2000) with some minor adjustments by von Clarmann et al. (2003). Minimization of
a two-component cost function c

c = (y − F (x))TS−1
y (y − F (x))+ (x−xa)TR(x−xa) (1)

20

where y is the m-dimensional vector of measurements,

F the Rn →Rm signal transfer forward model,

x the n-dimensional vector of the unknown components of

the atmospheric state,
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Sy the m×m measurement error covariance matrix,

xa the n-dimensional a priori information on

the atmospheric state, and

R an n×n regularization matrix,

leads, after linear replacement to F (x) by xa+K(x−xa) where K is the Jacobian matrix
with elements ki ,j = ∂yi/∂xj to the following retrieval equation:5

x̂ = xa + (KTS−1
y K+R)−1KTS−1

y (y − F (xa))

= xa +G(y − F (xa)),
(2)

where the ˆsymbol denotes the estimated profile, and where the so-called gain-function
G, which will later be used for brevity, is implicitly defined by the second line of the equa-
tion. Various choices of R are possible: R = S−1

a where Sa is the a priori covariance ma-10

trix leads to a maximum a posteriori retrieval (Rodgers, 2000) while squared and scaled
kth order finite difference matrices have been suggested by Phillips (1962), Tikhonov
(1963a, b), or Twomey (1963) and which have systematically been investigated for re-
mote sensing applications by, e.g., Steck and von Clarmann (2001). Nonlinear variants
of this approach are common but not relevant to the topic of this paper.15

The dependence of the solution on the true state is characterized by the so-called
averaging kernel matrix of dimension n×n

A =
∂x̂
∂x

= (KTS−1
y K+R)−1(KTS−1

y K) (3)

With this we can rewrite Eq. (2) as

x̂ = Ax+ (I−A)xa, (4)20
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where I is the n×n identity matrix. Rodgers (1990, 2000) suggests to apply generalized
Gaussian error propagation (c.f. Sect. 3) to estimate the smoothing error, which is the
mapping of the expected deviation of xa from the actual x:

Ssmoothing = (I−A)Sa(I−A)T (5)

This holds only if indeed xa =< x >, where <> denotes the expectation value. More5

precisely, it is required that Sa represents the covariance around < x >, and not the
covariance around xa if the latter happens not to be chosen to equal < x >, or around
any other arbitrarily chosen a priori covariance matrix. The use of arbitrarily chosen
covariance matrices for the evaluation of the smoothing error is critically discussed
in Rodgers (2000, p. 49), while the need to evaluate the smoothing error around the10

correct expectation value of the atmospheric state is outlined, e.g., in von Clarmann
and Grabowski (2007). In the latter case the effect of the formal constraint is not only
smoothing of the true atmospheric state, and in consequence the so-called smoothing
error has to be modified by adding the term

(I−A)(xa− < x >)(xa− < x >)T(I−A)T, (6)15

which accounts for the bias of xa.
Further, it is important, that the Sa matrix includes atmospheric variability on all

scales which can be represented on the grid on which it is evaluated. Sa matrices con-
structed from real data often happen to be singular. This can hint at a situation where
the parent data do not resolve atmospheric variability on the small scales correspond-20

ing to the grid on which the Sa is represented. In this case, Eq. (5) will underestimate
the smoothing error. The same is, of course, true if the parent data do not fully cover
the true spatial and temporal atmospheric variability.

By the way, the term “smoothing error” can be misleading, because, depending on
the retrieval scheme chosen, the retrieved profile is not necessarily a smoothed version25

of the true profile but a mixture of the a priori profile and the profile the unregularized
retrieval would tend towards. There is no reason that the profile obtained by means of
Eq. (2) should always be smoother than the true profile.
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3 Error Propagation

3.1 General linear or moderately linear case

Let

v = f (u) (7)

for any real vectorial argument u and any real vectorial result v (note that, while in the5

empirical world restriction to vectors of rational numbers would be adequate because
transcendent values usually cannot be measured, the concept of derivatives requires
the space of real numbers). The uncertainties of u map onto the uncertainties of v as

Sv ≈ KSuKT (8)

where Su and Sv are the error covariance matrices of vectors u and v , respectively,10

and where K is the Jacobian matrix of v = f (u) with elements
∂vj
∂ui

. Equation (8) is
a generalization of the Gaussian error propagation law

σ2
vj
≈
∑
i

(
∂vj
∂ui

)2

σ2
ui

(9)

where σui and σvj are the standard deviations representing the uncertainties of vj and
ui , respectively. Contrary to the latter equation, which assumes uncorrelated ui , Eq. (8)15

is valid also for intercorrelated errors of ui , which are accounted for by the related off-
diagonal elements of covariance matrix Su. This error propagation rules are generally
accepted for all cases except grossly nonlinear functions f (u).

Application of this formalism to the mapping of measurement noise onto retrieved
atmospheric state variables gives20

Snoise ≈ GSyGT. (10)
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3.2 Application to retrieved profiles

Typical linear operations performed with retrieved vertical profiles are transformation
from one altitude grid to another, e.g. by interpolation from a coarse grid to a finer grid
(c.f. Rodgers, 2000, p. 162) by

x̂fine = Wx̂coarse (11)5

of which a possible inverse operation is

x̂coarse = Vx̂fine = (WTW)−1WTxfine. (12)

Here, x̂coarse and x̂fine are of dimension n and ñ, and W and V are ñ×n and n× ñ
dimensional transformation matrices, respectively.

According to Eq. (8), retrieval noise is propagated from the coarse to the fine grid as10

Snoise, fine = WSnoise, coarseWT (13)

and from the fine grid to the coarse grid as

Snoise, coarse = VSnoise, fineVT. (14)

The same equations apply to the propagation of the parameter error.15

As already mentioned by Rodgers (2000, p. 163), the a priori covariance matrix Sa
cannot be transformed from a coarser to a finer grid by means of Eq. (13), because it
does not represent the variability on any scale finer than that represented on its original
grid. It seems, however, to have remained unnoticed that as a direct consequence of
this, also the so-called smoothing error cannot be interpolated from its native grid to20

any finer grid. The smoothing error of x̂ represents smoothing error components only
with respect to variability which can be represented on the retrieval grid, viz. the grid of
Sa.
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The striking consequence of this, which has to the best knowledge of the author
never been mentioned, is that the generalized Gaussian error propagation does not
generally apply to the so-called smoothing error. Even for linear functions f (x), error
propagation laws fail when applied to the smoothing error, as soon as the linear function
involves any kind of interpolation to any grid finer than that on which the smoothing error5

has been evaluated. Interpolation of retrieved data to grids different from (often: finer
than) the initial retrieval grid are a frequent task, e.g. when data bases are created were
results of different instruments are represented in a common format and on a common
grid (e.g. Sofieva et al., 2013; Hegglin et al., 2013; Tegtmeier et al., 2013).

While Gaussian error propagation of the quantity called smoothing error would give10

Ssmoothing, fine = WSsmoothing, coarseWT

= W(Icoarse −A)Sa, coarse(Icoarse −A)TWT,
(15)

the correct linear estimate is

Ssmoothing, fine = (Ifine −WAV)Sa, fine(Ifine −WAV)T, (16)

which cannot be inferred via Eq. (8) from Ssmoothing, coarse. Here, Sa, fine is the a priori15

covariance matrix evaluated on the fine grid and including small-scale variability which
cannot be represented on the coarse grid, and Icoarse and Ifine are the identity matrices
on the respective grids.

In order to demonstrate that this difference is not only of academic interest,
Ssmoothing, fine has been evaluated both via generalized Gaussian error propagation20

(Eq. 15) and directly on the fine grid (Eq. 16, Fig. 1). The gridwidths of the fine and
the coarse grids have been chosen 1 km and 3 km, respectively. For simplicity, the
coarse grid was chosen to be a subset of the fine grid. The averaging kernels were
assumed to be triangular, with halfwidths of 6 km, where the sum over the averaging
kernel elements was unity (bottom left panel in Fig. 1). The a priori covariance matrix25

Sa, fine was constructed with diagonal values of one (in arbitrary units), and exponen-
tially decreasing all positive off-diaginal values, where the correlation length was set
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1 km (upper left panel in Fig. 1). Construction of Sa, coarse relies on the V matrix (upper
right panel in Fig. 1). Averaging kernels and errors were chosen altitude-independent.
The resulting smoothing error on the coarse grid is, in terms of variances, 0.33, and
the covariances between adjacent profile points are as negative as −0.23 (dark blue
curve in the lower right panel in Fig. 1, hardly discernable because overplotted by the5

central red curve). This anticorrelation is intuitive because smoothing means that if,
e.g., a profile maximum is smeared, the retrieved values at the maximum will be too
low while values at adjacent profile points will be too high. Generalized Gaussian error
propagation of the smoothing error to the fine grid according Eq. (15) reproduces the
errors at the gridpoints of the fine grid which are also part of the coarse grid, but at in-10

terjacent gridpoints the propagated smoothing error variances are calculated to be as
low as 0.08 (red lines/symbols in the lower right panel in Fig. 1). This is computationally
intuitive, because interpolation between values with anticorrelated errors leads to error
cancellation; physically, however, this is counterintuitive because interpolation cannot
reduce the smoothing error. The direct evaluation on the fine grid via Eq. (16) gives15

smoothing error variances of 0.55 at the points belonging to both grids and 0.64 for the
interjacent gridpoints (light blue lines/symbols in the lower right panel). The smoothing
errors are larger because they account for the additional variability which can be repre-
sented only on the fine grid but which is lost when smoothing errors are evaluated on
the coarse grid. For larger correlation lengths in Sa, fine, the smoothing errors decrease20

but the contrast between both ways to estimate it on the fine grid remains large.
So either Gaussian error propagation has to be abandoned or the smoothing error

problem has to be fixed in a way that the smoothing error concept becomes consistent
with the generalized Gaussian error propagation law. Since Gaussian error propaga-
tion is an essential part of linear theory and even of quantitative empirical research25

in general, it might not be acceptable to drop it in favour of the current smoothing er-
ror concept. Instead, either a way needs to be determined, how the smoothing error
concept can be modified such that it becomes compatible with established error prop-
agation laws, which will be tried in the next section, or an alternative way to report the
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a priori content of the retrieval which makes no use of the smoothing error concept is
needed.

4 The nature of the retrieved quantities

Having the source of the problem understood, it seems to suggest itself to evaluate the
smoothing error on an infinitesimally fine grid. This would assure that the smoothing5

error represents atmospheric variation on all possible scales. Of course, this ideal can-
not be reached within finite-dimension algebra, but at least one could try to evaluate
the smoothing error on a grid fine enough that further refinement of the grid does not
imply additional variability. In other words, the problem shall be diagnosed on a grid on
which the full variability of the atmosphere can be represented. This approach is based10

on the assumption that the residual smoothing error not accounted for on a finite grid
converges towards zero for finer grids, once the grid is fine enough. In the following it
will be shown that this assumption is false.

For a single extensionless point in the atmosphere, the mixing ratio of a species is
not a meaningful quantity: either, at the given point, there is a target molecule; then the15

mixing ratio is one. Or there is a molecule of another species, then the mixing ratio is
zero. Or there is no molecule at all. Then the mixing ratio is fully undefined because this
would involve division by zero. For number densities and temperature, there are similar
problems to define these quantities in any meaningful manner for an infinitesimal point.
Admittedly, the scales discussed here are of no concern in remote sensing. However,20

it is not intended here to discuss the state of single molecules but simply to show that
there exists no reasonable limit to which mixing ratios, number densities or temperature
converge for steadily decreasing scale lengths. For example, mixing of air parcels of
different composition range from planetary waves down to the molecular scale. Thus,
for any finite grid, there exist sub-grid processes causing their own variability of the25

atmospheric state not represented by Sa, until we reach the molecular scale on which
the pathological cases discussed above occur.
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In conclusion, the attempt to solve propagation problem of the smoothing error by
a grid fine enough that it is guaranteed that interpolation will never occur must be
considered as failed.

5 The way out of the dilemma

Since generalized Gaussian error propagation is one of the most essential principles5

of linear theory, it seems not acceptable to define an error which, even for a linear op-
eration, is not propagated by Eq. (8). The problem can be avoided by changing the no-
tion of what an atmospheric state variable actually represents. All problems discussed
above originate from the fact that an ideal measurement of an atmospheric state value
represents an extensionless point in the atmosphere, and that every measurement of10

finite spatial resolution is less than ideal and thus affected by a smoothing error repre-
senting the expectation of the deviation of the finite-resolution measurement from the
“true actual value at an extensionless point”. Already Rodgers (2000, p. 48) mentions
the alternative to understand a measurement of the atmospheric state to characterize
an extended air volume and to characterize the measurement by its errors (excluding15

the smoothing error) plus a characterization of the spatial resolution (e.g. via commu-
nicating the averaging kernel to the data user). As a result of the discussion above, this
approach is not only an option but seems to be the only reasonable choice because the
concept of the ideally infinitesimally fine resolved atmospheric state has been shown to
be untenable. The smoothing error concept contradicts itself, because the evaluation of20

the smoothing error on a finite grid gives the notion of the retrieval characterizing a finite
air volume access through the back door again, i.e., it breaks with its own assumption
that the “smoothing error” represents the smoothing component of the retrieval error in
absolute terms.

Once having accepted the failure of the smoothing error concept as a tool to char-25

acterize the smoothing component of the difference between the retrieved and the true
atmospheric state, it is comforting that the finite-resolution concept offers at least three
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further advantages: first, the estimate of the error budget for any retrieval involving
a given R (which may or may not be an approximation to S−1

a ) no longer depends via
Eq. (5) on the choice of the a priori covariance matrix. Often no reliable estimate of
Sa is available, but any arbitrary choice is in conflict with the smoothing error concept
(c.f. Rodgers, 2000, p. 48). Second, the averaging kernel is needed anyway for a num-5

ber of applications of measured data, and to provide it instead of the smoothing error
is advantageous for the data user. And third, error budgets of instruments whose re-
trievals are performed on different grids become intercomparable, which was not the
case when the error budget still included the smoothing error. The latter is again related
to the core of the problem, viz. that smoothing errors evaluated on different grids actu-10

ally represent different error components. Although meaningless, it is indeed common
practice to compare total error bars (including the smoothing component) of retrievals
performed on different grids.

One implication of abandoning the smoothing error concept is that the usual estimate
of the retrieval error covariance matrix is no longer valid, at least not in a general15

sense where transformation between grids are an issue. Rodgers (1976) states that
the retrieval error covariance matrix is

Sx =
(

KTS−1
y K+S−1

a

)−1
. (17)

This covariance matrix contains both the measurement noise and the smoothing error
component (c.f. Rodgers, 2000, p. 58). Thus, all caveats discussed for the smoothing20

error apply equally to the error estimate of Eq. (17). An error estimate free of smoothing
error contributions can be made by direct application of Eq. (10) to the various error
sources, viz. noise and parameter errors.

By the way, Eq. (17) is, regardless of the notion with respect to the smoothing er-
ror concept, inapplicable to any choice of the Sa matrix except the true climatologi-25

cal a priori covariance matrix. While reasonable retrievals can be performed with ad
hoc choices of Sa or with replacement of its inverse by other regularization matrices,
Eq. (17) does not provide a valid error estimate in these cases. The inadequacy of an
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ad hoc choice of Sa already highlighted by (Rodgers, 2000, p. 48) also turns Eq. (17)
inadequate for all choices of Sa except the true covariance of the atmospheric state
under investigation.

6 Implication for comparison of retrievals

An exception, where a quantity calculated on the basis of a concept closely related5

to the smoothing error is still a usefull and powerful tool, is comparison of remotely
sensed data according to Rodgers and Connor (2003, their Eqs. 10–14). These authors
suggest in their paper to validate profiles against each other by testing if their difference
x̂1 − x̂2 is significant in terms of χ2 statistics. The covariance matrix of the difference,
Sδ , needed for this test, however, must not include interdependent components of the10

smoothing error. Thus, these authors suggest to calculate Sδ as

Sδ = (A1 −A2)TSc(A1 −A2)+Sx1 +Sx2, (18)

where A1, A2, Sx1 and Sx2 are the respective averaging kernel and retrieval noise
covariance matrices and where Sc is the comparison ensemble covariance matrix. The
first term of the right hand side of this equation characterizes the smoothing difference15

between both these retrievals.
This estimate of the smoothing difference between two instruments’ results is neces-

sary to judge if the difference between the retrievals is different or if it can be attributed
to the different smoothing characteristics of the retrievals. In this context it is not nec-
essary to know the smoothing error relative to the true atmospheric state but it is suf-20

ficient to characterize the difference between the smoothing characteristics. Following
the Rodgers and Connor (2003) scheme, the difference is calculated on a common
so-called “intercomparison grid”, which shall generally be at least as fine as the par-
ent grids. When the difference x̂1 − x̂2 between the profiles is calculated on this grid,
any degradation of the knowledge of the atmospheric state due to the representation25

on a finite grid is the same for both profiles and thus cancels out, provided that Sc
3314

http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/7/3301/2014/amtd-7-3301-2014-print.pdf
http://www.atmos-meas-tech-discuss.net/7/3301/2014/amtd-7-3301-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


AMTD
7, 3301–3319, 2014

Smoothing error
pitfalls

T. von Clarmann

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

has been evaluated on the intercomparison grid or any grid finer than that but is not
a result of interpolation. That implies that when differences of profiles are considered,
the problematic component of the smoothing error, which is the difference between the
true atmosphere sampled on the comparison grid and the true atmosphere at “infinite
resolution”, has no relevance anymore, and the χ2 analysis is still valid.5

The approach of Rodgers and Connor (2003), however, is not without pitfalls: it is
essential that the a priori covariance matrix of the comparison ensemble, Sc represents
all variability of the atmospheric state on the comparison grid. The a priori covariance
matrix cannot simply be interpolated to the comparison grid, for reasons discussed in
Sect. 3.2.10

In summary, the smoothing difference, if calculated correctly, is still a useful quantity,
while the parent smoothing errors of the original profiles are affected by the problems
discussed in the previous sections and thus should not be part of an error budget.

7 Conclusions

The following discussion is limited to retrievals using formal a priori information. Rec-15

ommendations are conditional, assuming that the decision in favour of a constrained
retrieval has already been made. Alternatives which avoid the whole problem such as
maximum likelihood retrievals without a formal constraint may be worthwhile trying but
are beyond the scope of this discussion.

It has been shown in this paper that the quantity called “smoothing error” does not20

represent an estimate of the regularization-induced difference between the retrieved
state and the true state of the atmosphere. Instead it characterizes the difference be-
tween the retrieved state and an arbitrary representation of the true state, where this
arbitrary representation itself, being a representation on a finite discrete grid, has its
own implicit smoothing error. It has further been shown that this problem cannot be25

solved by representing the atmosphere on a “sufficiently fine” grid, because the es-
timate of the atmospheric state does not converge to a useful value when the grid
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approaches an infinitesimally fine grid. This is because the quantities used to char-
acterize the atmosphere (mixing ratio, concentration, temperature) are not defined for
extensionless points.

This problem could be considered purely philosophical and practically irrelevant, and
the “smoothing error” could be treated as a theoretical term without direct correspon-5

dence to the empirical world (e.g. Carnap, 1966, 1974), wouldn’t the consequence of
this problem be, that the quantity called “smoothing error” does, contrary to the other
retrieval error components, not comply with generalized Gaussian error propagation.
This fact causes major reservations against the smoothing error concept and implies
that the quantity calculated according Eq. (5) thus should not be called an “error” in10

terms of error propagation. While, if calculated correctly, a smoothing difference of two
profiles is still a useful quantity, the inclusion of the so-called smoothing error in the
error budget of a retrieval will cause confusion and will lead to inadequate operations
by data users.

A useful and safe way to communicate the smoothing characteristics of the retrieval15

is to provide the averaging kernel along with the data. If for some debatable reason
the smoothing error still is to be supplied, at the very least, the native grid on which
this error has been evaluated needs to be presented along with the error estimate, and
a caveat is needed to warn the data user about the smoothing error pitfalls.
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Fig. 1. Case study: the upper left panel shows the a priori covariances on the fine grid (gridwidth
1 km). Only the symbols are significant, the lines are only plotted to guide the eye. The large
asterisks are the variances. The variance and covariances referring to 25 km are highlighted
for clarity. The top right panel shows the covariances on the coarse (gridwidth 3 km) grid. The
lower left panel shows the averaging kernels on the coarse grid. The lower right panel shows the
estimated smoothing errors (in terms of variances/covariances) at 24, 25, and 26 km altitude:
the smoothing errors on the fine grid estimated by Gaussian error estimation (red) are largest at
25 km, an altitude which coincides with an altitude of the coarse grid, and are smaller for 24 and
26 km where the values on the fine grid depend on interpolation. The opposite is true for the
direct estimates of the smoothing error on the fine grid (light blue): here the smoothing error is
smallest at 25 km and larger at 24 and 26 km. More important, the directly estimated smoothing
errors are considerably larger. This is because the relevant a priori covariance matrix contains
larger atmospheric variability (c.f. top panels). The original smoothing error estimate on the
coarse grid (dark blue) is hardly visible because it is identical to that represented on the fine
grid.
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